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This paper presents a model for predicting the runtime and storage requirements for
direct simulation Monte Carlo (DSMC) simulations of rarefied gas flow. A variety of
flow configurations are considered, including internal, external, steady, and unsteady.
The analysis is independent of the simulation architecture, gridding technique, col-
lision model, and implementation technique. The model is validated and constants
of the model determined for simple test cases. The model is then used to predict the
requirements of a realistic three-dimensional simulation, and the results are shown to
agree with experiments. Additional predictions define the boundaries of simulations
that are feasible with existing computational resources1999 Academic Press

1. INTRODUCTION

A variety of simulation techniques are used for the simulation of fluid flow, or gas
namics. The characteristic parameter that determines gas flow properties is the Kn
number,Kn= /L, where is the mean free path in a gas ahds the reference flow
scale. In theeontinuum regimewhere the Knudsen number tends toward zero, microsco
structure can be ignored, and a system can be completely described in terms of macro
parameters such as density, temperature, and velocity. freéirenolecular regimevhere
the Knudsen number tends toward infinity, collisions between molecules can be negle
and the flow behavior is controlled by interactions between molecules and boundary
faces. The region between the continuum and free-molecular regimes, where the Kn
number is close to unity, is called tkrnsition regime
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In the transition regime, viscosity, heat conduction, relaxation, diffusion, and chemi
processes are important, and it is also possible for velocity distribution functions to be n
Maxwellian, resulting in strong thermal nonequilibrium. As thermal and chemical relaxati
lengths may be comparable to the reference flow scale, differences between translati
rotational, and vibrational temperatures may be important.

Several numerical techniques for simulating transitional gas flow have been develo
in the past 20 years. Navier—Stokes and viscous shock layer equations can typically be
for the simulation of near-continuum flows, with appropriate extensions for modeling s
velocity and temperature jumps at surfaces. Because the Navier—Stokes equations as
only small deviations from thermal equilibrium, however, they are not suitable for studyi
rarefied flows with flow disturbances, such as shock waves, in which the velocity distribut
functions are strongly nonequilibrium.

The governing equation in the transition regime is the Boltzmann equation, a detai
treatment of which can be found in [11, 12, or 21]. It is a nonlinear integral—differenti
equation, closed with respect to the one-particle distribution function, which in turn det
mines the density of particles in a six-dimensional phase space of particle coordinates
velocities.

Some approaches for solving the Boltzmann equation include direct integration, mol
ular dynamics methods, the direct simulation Monte Carlo (DSMC) method, techniqt
coupling both DSMC and continuum methods [8], model equation approaches [31],
the test particle method [14]. The DSMC method is the approach of choice for the st
of complex multidimensional flows of rarefied hypersonic aerothermodynamics. Reas
for this include the simple transition from one-dimensional to two- and three-dimensiol
problems, and the ease with which complex models of particle interaction can be incor
rated without substantial increase in computational costs [18]. It is also well suited for (
on modern concurrent architectures [28].

Systems that the DSMC method can be used to simulate include space vehicles ir
upper atmosphere [6, 16, 17], plasma reactors for semiconductor manufacturing [2, 29,
lava flow from volcanoes [1], and many others.

The DSMC method was pioneered by Bird [4, 5, 7]. It can be used to model chemi
reactions and has been extended to address translational and rotational effects in ga
expansions [3] and to include the maximum entropy (ME) and Borgnakke—Larsen varie
(BL) [23]. Sophisticated models have been developed for energy transfer between vil
tional and translational modes, such as those used in simulating flow over a two-dimensi
wedge [9]. Chemical reaction models have been used to model reacting flows [6]. DSI
has also been combined with fluid electron models and self-consistent electric field:
simulate plasma systems [2, 26].

In principle, the DSMC technique can account for all of the physics needed for a
problem [24]. It is, therefore, a pure form of computational fluid dynamics. In practic
however, the technique can be substantially more computationally intensive than cor
uum approaches. The goal of the present work is to study the computational cost of DS
simulations, in terms of the physical parameters of the systems that are being modeled,
as density, temperature, and velocity. Predictive models for simulation time and storage
quirements are developed. These models are independent of the simulation architec
gridding technique, collision model, and implementation technique. The models are de
oped for three-dimensional simulations, but they can also be generalipedirttensional
simulations [30].
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The applications of these models are threefold. First, for existing DSMC applicatic
they facilitate the understanding of how changes in simulation parameters affect cha
in computational requirements. Second, they may be useful in comparing DSMC to o
techniques for a given problem. Finally, they provide a straightforward method for
termining whether a desired simulation is feasible, given available time, processing,
memory constraints.

2. NUMERICAL METHOD

The direct simulation Monte Carlo method is an approach for solving the Boltzme
equation by simulating the behavior of individual particles. Since itis impossible to simul
the actual number of particles in a realistic system, a smaller number of simulation part
are used, each representing a large number of real particles. A computational grid is us
represent the simulated region. Statistical techniques are employed to reproduce the c
macroscopic behavior. Figure 1 shows a schematic of simulated particles and grid cell
DSMC computation. In three dimensions, cubic, hexahedral, tetrahedral, or prismatic
may be used, depending on the implementation and specific simulation requirements

The DSMC algorithm is shown in Fig. 2. Initially, grid cells are filled with simulatiot
particles according to density, temperature, and velocity specifications. A simulation 1
takes discrete steps in time. Particle motion and interactions are decoupled over the du
of a timestep. Each timestep is composed of two phdsessport where particles move
between grid cells, ancbllisions where particles interact within a cell. Macroscopic prop
erties, such as density and temperature, are computed by appropriate averaging of p
properties.

The transport phase, concerned with moving particles through the computational
for a specified period of time, may be implemented in several ways. For simple Carte
grids, particle destinations are quickly computed, and particle cell destinations are comg
using indexing schemes [15]. For more complex grids, such as hexahedral or tetrahe
ray-tracing techniques can be used to determine particle positions in space and in the ¢
the end of a timestep [28]. Interactions between particles and boundary surfaces may
take place during the transport phase.

Particles

FIG. 1. Cells and particles in a DSMC simulation.
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1. Initialize cells according to initial conditions
2. While more steps are necessary

(a) Move particleg Transport phase
(b) Collide particlegCollision phasg

(c) Compute global informatian
such as the total number of simulated particles

3. Compute results from cell and particle information

4. Conclude computation
FIG.2. The DSMC algorithm

The collision phase implements particle—particle interactions. Cell sizes are chosel
that only collisions between particles in the same cell must be considered. The numbe
collisions that take place in a cell is a function of the number of particles in the cell a
the volume of the cell, as well as model-specific parameters, such as the particle mass
collision cross section.

While the DSMC algorithm appears simple, its complexity can only be determined frc
careful consideration of computational and physical parameters. The primary constre
on the DSMC method are: (1) the cell size must be proportional to the local mean f
path; (2) the number of particles per cell must be roughly constant in order to prese
collision statistics; and (3) the simulation timestep must be chosen so that particles c
traverse a fraction of the average cell length per timestep [7]. The following sections stt
the implications of these constraints and present models for the run time and men
requirements of DSMC simulations.

Several classes of simulations must be considered when evaluating computationa
quirements. Simulations can be either steady state or unsteady and can be for either int
or external flows. The computational requirements of unsteady simulations are differ
from, and may be much greater than, those of steady simulations. Internal flow simt
tions typically use simulation volumes that are specified by the physical geometry of |
problem, while external flows use simulation volumes determined by flow properties. T
performance implications of these different classes of simulations are discussed below

3. COMPUTATIONAL COMPLEXITY ANALYSIS

The important physical parameters for a simulation depend on the type of simulati
Internal-flow systems, such as plasma reactors, are typically characterized by the patr
density, the simulated volume, and the collision cross section. Together, the particle der
and collision cross section determine the mean-free path and therefore the required si
computational grid cells, while the simulated volume determines the number of cells that
required and the time taken for information to travel across the system. For certain exter
flow systems, however, the effects of these parameters are different. For simulation
unsteady flows, it is also important to consider the time during which the system must
simulated, as well as the characteristic oscillation time of the system.

Simulation Parameters

In order to predict the performance cost of the collision and transport phases of a DS
computation, it is useful to calculate some general system parameters, such as the rec
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number of cell€C, the simulation timestept, and the total number of required timestefs,
The number of cells required for a simulation can be determined from the DSMC const
that the typical cell size, or characteristic cell lendtine proportional to the mean free
pathx,

| =gA = —, 1

== )

wherec; is a proportionality constant is the particle number density (particles per uni
volume), and is the collision cross section. The cell size is also typically proportional
the cube root of the average cell volume,

| =c,(V/C)Y3, )

wherec, is a constant that reflects the type of grid and the skewness of grid cells. Combil
Egs. (1) and (2) and solving for the number of c€llyields

C3
C= (=2 |n3V. ()
G

The number of particles required by a simulatidh,is chosen to be proportional to the
number of cells requiredN =c,C. The number of particles per celp, must be large
enough to allow for a sufficient number of collisions per cell and to provide adequ
samples for statistics, as discussed below. Using the valGefimim (3) gives

C3
N = c,C = ¢p <C—;> nc3V. (4)

A

A typical simulated system may contain a number of particles comparable to Avogac
number. As it is computationally infeasible to simulate this number of particles, it is n
essary for each simulated particle to represent a large number of real particlegeighe
of each simulated particle, or the number of real particles represented by each simu
particle,wp, can be written as the ratio of real to simulated particles, which can in turn
written in terms of the number of cells, using Egs. (3) and (4),

wp=ﬂ—°—§( ) ©)

- 3 253
cpC  cpcl\n%o

The total amount of simulation time required for a steady-state simulation to conve
depends on the geometry of the system and the thermochemical properties of the
being simulated. For the purposes of a performance model, however, the convergence
may be based on the acoustic time, the amount of time that it takes for thermal informe
to traverse the entire width of the simulated regionThe quantityL can be approximated
as proportional to the cube root of the simulated volume; ¢, VY3, where the constant
c, reflects the shape of the simulated region. A long, narrow volume will have a highel
than a spherical volume.

The thermal speed for a single-species gas can be computeabs ./8kT /7 m, where
kis the Boltzmann constari,is the gas temperature, amds the particle mass. Information
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propagates fastest in high-temperature, low-mass gases. Assumiogdhatistic periods
are required for convergence, the acoustic, or convergenceltgneis given by

V1/3
Tconv = CLCy v . (6)
t

The simulation timestept should be chosen so that the average distance traveled
a patrticle in a timesteq, is some fractiong;, of the average cell Iengtlh_, If particles
traverse too many cells in one timestep, results may be inaccurate. On the other hanc
small a timestep will result in inefficient computation. The average distance traveled b
particle in a timestep can be estimated as the product of the timastapd the sum of
stream and thermal velocities; v. Using these approximations, with (6) and (3), yields

1/3
= GC (V_/L @)

At =
Vtotal v+ vt

Using the value o from (3), this can be rewritten

CiCy,
At = —=]—.
(v + vp)no

(8)

It is important to note that an increase in any of the paramatets,T, or v, results in a
decrease in the timestep duration. This in turn results in an increase in the number of
required for a simulation and, therefore, the simulation time. The number of steps requ
for convergence&.ony, is the ratio of the acoustic timkp, to the timestepit. Using (8),

Tconv CLCy v 1/3
= = 1+ — |JnoV¥3 9
Sonv At G, + " o ()]

In addition to considering the time required for a simulation to converge, it is al
important to examine the trade-off between execution time, memory usage, and solu
quality. One measure of the quality of a solution is determined by the noise, or statist
scatter. The statistical scatter is determined by the numiszamoplesor the product of the
average number of particles in a celj, and the number of steps over which macroscopi
properties are average8;. Assuming that the scatter follows a Poisson distribution, th
fractional errorg, is inversely proportional to the square root of the number of sample
Ns [7],

em Lt 1 (10)
N T /6
In order to obtairr samples per cell, it is necessary to average resultsrgegrsteps.

In the following sections, these parameters are used to compute the amount of 1

required for the transport and collision phases of a DSMC timestep.

Transport Phase

The time required for the transport phase of a timestep is given by the product of ti
required to move one particl&;, and the number of particlesl,

Tirans= TtN = Ty cpC. (11)



REQUIREMENTS FOR DSMC SIMULATIONS 101

The parametetf; is dependent upon both the machine speed and the implementation o
transport model. Using the value fdr computed in (4)TiransCan be written

CpCh 3 3
Ttrans= TtN = -rt?n o V (12)
A

Collision Phase

Thetime required to compute collisions ina DSMC timestep is proportional to the num
of collisions. Consider a computational cell of voluivig, that containg, particles. Using
the hard sphere (HS) collision model, the number of collisions in that cell during a gi
timestepAt is given by,

N. — Cp(Cp — Dovrwy
¢ 2Vcell

whereo is the collision cross section ang is the relative velocity between patrticles. Fol
a single-species gas, the mean relative velocity is given by the equatiory16kT/zm,
and can therefore be written in terms of the mean thermal velaq;iw,vt\/?. Using the
timestep duratiomAt from (8) and the particle weight computed in (5), as well as tt
approximationVee = V/C, yields

_ (cp— 1)CtC,\< Ut )
Ne = 7 o) (14)

The total time spent on collisions is one timestep is then the product of the time s
on each collision;T, the number of collisions per celN;, and the number of cell<;.
Combining (14) and (3) yields

At, (13)

(cp—Dacd [ v 3 3
Teol = TeNeC = T NG (17+ vt)n o3V, (15)

As with transport, timestep collision time is proportional to the cube of both density ¢
cross section, and to the first power of the domain volume. This analysis was develope
the HS model, where is a constant. For the VHS modeljs a function of relative velocity.
Thorough analysis of the cost of the variable hard sphere (VHS) model could be compl
with integration over relative velocities. The result, however, would have roughly the sz
dependence os®. The extension to the variable soft sphere (VSS) model does not af
the number of collisions, only the postcollision scattering angle. Because more comput
is required with each collision, this would have the effect of increa$ingut it would not
change the dependence on the other parametars.andV.

Timestep Time

The preceding sections facilitate the prediction of the time required per timestep
simulation. Combining Egs. (12) and (15) yields the entire time required for one times
given by the sum of transport and collision times,

cd c(c, — e [/ w
Tone= —2 [Cp Ty + ——2 - Te|n303V. 16
one Ci plt \/é v+ o c|hmo (16)
This analysis does not depend on the type of grid used or the implementation of the tran
or collision phases. All particle transport algorithms must execute in time proportional to
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number of timesteps and the number of particles, and all collision algorithms must exec
in time proportional to the number of collisions, thus yielding the same dependence on
physical parameters, o, andV, and the constants,, ¢, Ca, C,, G, andc;.

Memory Requirements

In addition to modeling the required execution time for convergence and averaging pha
it is also important to predict the storage requirements for a simulation. The two prim:
uses of memory are particles and cells. For small simulations, it is also important to cons
the amount obverheadnemory,Mg, consumed by the application code and any constan
sized data structures. If the memory required for a single partidiésisind the memory
required for a single cell i, the total memory required for a simulatidipsyc, can be
written

Mpsmc = Mg + MpN + M.C = Mg + MpCpC + M.C = Mg + (MpCp + M¢)C. (17)

4. FLOW CONFIGURATIONS

This section considers the four possible flow configurations: steady-state internal, ste:
state external, unsteady internal, and unsteady external. The computational requiren
of each of these configurations have fundamentally different dependences on the phy
parameters. In order to provide a complete understanding of the complexity of the DSI
method, it is essential to consider each configuration separately.

Steady-State Internal Flows

In order to compute a steady-state flow, the simulation is first run to convergence,
then run for additional steps in order to sample and average macroscopic parameters
total simulation time is the sum of convergence and averaging times. The time require:
converge an internal-flow, steady-state simulatiéﬁggj", is the product of the time for
each timestep and the number of steps required. Using results from the previous sec
this yields

c3crca

internal
Ksteady = ToneStonv = c3 <
A

DT, T
V2 CiCy

The duration of the averaging portion of a steady computaﬂgﬁafgg'j", is governed by the
desired accuracy, or number of samples. Averaging time, for a desired number of sgmpl
is the product of the time required for each timesiigpe, and the number of steps required,

S,

> nto4v4s, (18)

. r
Alsqgea{g)a/ll = ToneS = Tonec—- (19)
p

The averaging time can then be written

- c3 C 1
Ao = % [n £ (1 _ )( ”t )} KRN (20)
8

Cp 17+ Ut

In other words, the time required to obtain smooth results is proportional to the cube
the density, the cube of the cross section, and the volume. It is also proportional to the
desired number of samples, or the inverse square of the desired error.
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For a steady-state, fixed-volume simulation, the memory requirements from Eq.
reduce to

MEerEl = Mo -+ (Mpcp + MCH o*V. )

The storage requirements for a simulation are therefore proportional to the cube o
density, the cube of the cross section, and the volume of the simulated domain.

Steady-State External Flows

For certain classes of external flow problems, it is appropriate to adjust the size of
computational domain according to the other physical parameters. As a first approxima
itis sometimes possible to use a computational volume with length proportional to the i
free path, or volume proportional ta3,

_ 3_ cd 22
= (CgA) = 1353 (22)

wherecq is the number of mean free paths to be simulated. The convergence time fo
external flow can then be written

33
external__ €dC,CLCa Cp—DTe  cpTy
Ksteady - CE ( \/i + CiCy : (23)

In other words, the convergence time is not a function of cross section or density. Simil
the averaging time for an external ﬂowgtxetgg”ya', for a desired number of samples,can
then be computed as

33
external__ ©»Cd CtCy, 1 Ut
= T+ T 1-— r. 24
teady c [t C\/é< ><U+Ut)] %)

The memory requirements of a steady external simulation can be written

3 3
Mggae&r;al Mo+ —%- (Mpcp+ Me). (25)

Just as simulation time is not a function of cross section or density for this class of proble
storage requirements are not functions of cross section or density. For some impc
systems, it is possible to adjust the volume with the mean free path, but not in a dire
proportional manner. For these cases, the computational requirements may be estima
using the analysis of this section, together with the analysis of the previous section.

Unsteady Internal Flows

For an unsteady problem, the total simulated time is a specified parameter, not d
mined by convergence time. Consider an unsteady simulation of a time intgrvaith a
characteristic oscillation time. The ratioT, /7 is the number of periods to be simulated
Because the flow is changing, it is not possible to average results over a large humkt
steps. There are therefore two ways to obtain smooth results for unsteady flows. One
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choose a number of particles such that results averaged over a small number of step:
be sufficiently smooth. The other approach is to run a number of simulations with a sn
number of particles, but using a different random seed for each. The results from the dif
ent simulations can then be averaged together to obtain smooth results. While both met
require approximately the same amount of simulation time, the first method requires :
nificantly more memory. The following analysis assumes thaeparate simulations are

used, wherd® = 1 corresponds to the first approach, @d 1 corresponds to the second

approach.

For unsteady flows, results can only be averaged over a short period of time during wt
the flow remains approximately unchanged. The number of particles pecgethust be
chosen so that the desired number of samples can be obtained while the flow is unchar
It must be assumed that the flow is unchanged over some (small) fractiarSaimpling
can then take place during a tinegr. The number of steps over which it is possible to
average is given by
C.T
At
The number of samples, obtained withP separate simulations is the product of particles
and steps,

&= (26)

(o 4
At

r=cpS =¢pP (27)

Equation (27) can be solved to determine the minimum number of particles required
Ce”1 pminy

r At
Pmin = C‘r?’ (28)
which can be rewritten using (8)
Ct 1 r
n=—|[= . 29
Prmin Crcx(v—i—vr) Pnot (29)

The computational time required f& unsteady simulations is given by the product of the
time taken for each timestepsne, and the number of steps that must be simulaggdThis,
in turn, is the ratio of the unsteady tinig to the timestept,

i T,
ARGty Tone (30)
Using previously computed values and the approximatjpr 1 ~ cp, this yields
: cpC? Ct v _
At = 22 [Tt b1 (5 . )} @+ wn'e VT, (31)
Substituting the minimum number of particlps for ¢, in (31) yields
- Pmc3 e/ v _
At = % 1+ T2 () [ ooy, @2

c3 G v n3a3VrT,
- [Tt+TC—‘<_ ' )} = (33)
CCC, C, \ U+ vt T
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This shows that for unsteady simulations with a given oscillation perjtide computa-
tion time is proportional to the cube of both the density and the cross section, proporti
to the volume, the number of desired samples, and the simulated time, but inversely pr
tional to the oscillation time. The cost of unsteady simulations therefore does not gro
fast as the cost of constant-volume steady simulations, primarily for the reason that unst
simulations are not required to converge.

For typical values oh, o, V, andt, however, the number of particles required for a
unsteady simulation is very much greater than the number required for a steady simule
The time and memory requirements of unsteady calculations are therefore substan
greater than for steady calculations. In some cases, the initial conditions may be sufficif
uncertain or complicated that a steady simulation must be converged to determine t
conditions before an unsteady computation can begin, further increasing the cost of uns
simulations.

In order to estimate the memory requirements for each unsteady internal flow simula
the previously computed value @f, can be used in (21) to obtain

03 (o 1 n2o2r
internal 3.3
Munsteady Mo+ — [MpCrC/\ <17+Ur) P + M¢n®c?| V. (34)

Unsteady External Flows

The simulation time for an unsteady external flow computation can be obtained by ¢
bining (32) and (28), yielding

. c3c3 G v rT
Ainternal - =vd o p 20O v 35
wnsteady™= o 3c | e \ T )| T %)

Similarly, memory requirements can be obtained by reducing Eq. (34) to

33
| ciC Ct 1 r
Minsieady= 3 [Mpc c (U_ o o Ml (36)
A T

Summary

The simulation execution time for the different configurations is summarized in Tabl
while the storage requirements for the different configurations are summarized in Tabl

TABLE |
Summary of Simulation Times for Different Configurations

Internal External
)T T 0 cSo ca T i

Steady o CLC (“” AL ifc;) N4e4v 43 i (Cpﬁ) c 2’;)
A

g['ﬂ + T2 (1- ) (55) neetvr + 33 [T+ T2 (1- ) (%) ]r

2 A

Unsteady C—§[T[+TC§—;(J+)]M ﬁ['rd.n%(f_r)]@

v+ T v+ T
ctc; e t e 't
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TABLE Il
Summary of Memory Requirements for Different Configurations

Internal External
S 3 3 e
Steady M0+(Mpcp+Mc)§n o3V MO+C—3(Mpcp+MC)
3 2 2 c3c§
Unsteady Mo + E—‘; [Mp (=5 ) =2 + Moo |V Mo + i? [Mps2- (75 )ass + M|

5. PARAMETER ESTIMATION

This section considers the parameters required for predicting runtime and storage
quirements for DSMC simulations. These parameters can be grouped in two classes: t
that are implementation-dependent or architecture-dependent and those that are not
former can only be discussed in the context of a specific implementation, while the lai
should be common among all DSMC implementations.

General DSMC Parameters

In general, particles should not traverse more than about one cell per timesieshsold
be less than one. Typical values ar8 @ ¢; < 1. The ratio of the cell size to the mean-free
path,c,, should be less than one. Many implementations ensure that this constraint is me
adaptively adjusting cell sizes appropriately. For such approaches, valagafettypically
between 0.3 and 1.

In order to understand the convergence time of a simulation, itisimportant to consider
grid shape and boundary conditions. For a spherical grid with a uniform external bound
information at the boundaries will quickly propagate throughout the domain. On the ott
hand, the simulation of a long curved tube with different boundary conditions at oppos
ends will require a long time to converge. In order to find typical values for the numb
of acoustic periods required for convergencg,a series of simulations was conducted.
The duration of simulated time required for convergence was measured for different gr
densities, simulated volumes, and boundary conditions. Typical values were found to b
the range from 3 to 10.

The number of particles per celly, must be large enough that a reasonable numbe
of collisions will take place in each cell. Using larger valueggtilso reduces statistical
scatter. On the other hand, both runtime and memory usage are proportianalRor
steady-state simulations; is typically chosen between 3 to 10. Some advanced statistic
techniques have been used to produce reasonably accurate results for as few as one p
per cell [15].

The parametec, represents the ratio of the typical cell dimension to the cube root «
the cell volume and is primarily grid-dependent. For typical tetrahedral grid cghs2,
while hexahedral cells have slightly smaller valuesofFor skewed grid cells;, can be
arbitrarily large. The ratio of the domain length to the cube root of the domain volun
c., is effectively the aspect ratio of the domain and may take values between 1 and 5
representative simulations.

The choice of the number of mean-free paths that must be simulated; largely
problem-specific, but representative simulations may use values between 10 and 1
Similarly, the choice oft,, the fraction of the oscillation period over which the flow is
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TABLE 11l
General DSMC Parameters
Parameter Description Typical values

(o Fraction of typical cell length traveled by 0.3-1

typical particle in one timestep
[ Ratio of cell length to local mean free path, 0.3-1

or minimum local Knudsen number
Ca Acoustic periods required for convergence 3-10
Cp Ratio of particles to cells 3-10
c, Ratio of cell length to cube root of cell volume 1-5
cL Ratio of domain width to cube root of 1-5

domain volume

Cq Number of mean free paths to be simulated 10-1000
for external flow

C, Fraction of the oscillation period over which 0.01-0.3
samples can be averaged

considered unchanging, is problem-specific. For a sinusoidal oscillation, howew€d, 1
is a reasonable approximation, providing 10 separate results for each oscillation peric
The implementation-independent parameters are summarized in Table III.

Implementation-Specific Parameters

The parameter$;, Tc, My, andMc, are both implementation- and architecture-specifi
For illustrative purposes, typical values were obtained for a DSMC implementhbizovk,
designed for the simulation of neutral flow in plasma reactors, and for spacecraft ree
calculations [27]. Other DSMC implementations will have different associated consta
but they must obey the same dependences on the physical parameters.

Several tests were conducted on a Silicon Graphics Power Challenge with 75-I
R8000 processors. Test cases included neutral flow in plasma reactors, hypersonic re
flows, and uniform thermal relaxation tests. Implementation-specific parameters did
vary significantly between the different test cases. In order to measure transport t
simulations were conducted with the collision phase disabled. Similarly, collision time v
measured on simulations with particle transport disabled. A valog ©f10 was used, and
the measured values wefe= 34 us andT, =40.0 us. Note that a larger value of will
increase the number of particles being simulated for the same amount of per-cell over
and result in smaller values fay andT.. The variable soft sphere (VSS) collision mode
was employed. Using a simpler model, such as variable hard sphere (VHS) or hard sj
(HS) simply reduces the amount of computation required per colligion,

The overhead memorily, was estimated fadawk by running a simulation with only
12 cells and with no particles. On the SGI Power Challenge, this value was foun
be approximatelyMo=2.97 MB. The memory usage per particle has a lower bound
six floating point values, three for position and three for velocity (in three dimensior
Most implementations, however, use additional storage space for storing additional
particle data structures that help to reduce runtime. The particle memory uskigavin
was estimated by running simulations with varying numbers of particles and recording
memory usage reported by the operating system, then subtracting the overhead me
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TABLE IV
Implementation-Specific Parameters

Parameter Description Typical values
T Time required to move one particle for one timestep u34
T, Time required to perform one collision 403
Mo Memory required for overhead 2.96 MB
M, Memory required for a particle 55B
M. Memory required for a cell 1482 B

Mo and dividing by the number of particles. This yielded an an approximate islyie;
55 bytes. It must also be noted that simulations using more sophisticated chemistry mo
may require additional memory to store, for example, internal energy or species informat
Per-cell memory requirements are likely to vary more between DSMC implementatio
In Hawk each cell stores several values for unstructured grid information, a pointer t
linked list of particles, local information used for collisions, and macroscopic parame
information. Many of these data structures are irregular and dynamic in nature, with si
that depend on the nature of the problem and may even change during a computation
the relatively simple computations discussed here, cell sizes were typically akbuad
1482 bytes.
Table IV summarizes the implementation-dependent parameters.

6. PREDICTIVE MODELING

In order to illustrate the application of the model to the prediction of actual simulatic
requirements, a series of internal flow simulations are considered. In order to asses:
accuracy of the performance prediction mod¢dwk simulations were conducted on five
box grids, each with a different number of cells. Execution time per timestep and mem
usage were measured. The execution time per timestep was predicted using Eq. (16
the parameters in Section 5.

Figure 3a plots predicted and measured step times as functions of the quanfiy.
For each simulation, the predicted step time is within 8% of the measured step time.
differences are largest for the small grids (low values®fV), which can be attributed to
the effects of computational overhead and setup time. The linear dependence of step
onn®s3V is clearly demonstrated by this experiment.

Figure 3b shows the predicted and measured memory requirements for the same s
lations. For the larger simulations, memory usage is proportional to the quafdity/,
while for small simulations, the overhead memaw, is the dominant term. These results
show excellent agreement between predictions and measurements. The difference bet
predictions and measurements is consistently less than 4%.

In addition to the internal flow configurations considered in this section, the authc
have conducted external flow simulations, including hypersonic reentry calculations w
gas mixtures and internal degrees of freedom, that are consistent with the performs
prediction model. The model has also been applied by Ivanal.to simulations of high-
altitude capsule aerodynamics with real gas effects, using a completely different DS
implementation [19]. Using suitable implementation-specific parameters, their data ac
well with the model [20].
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FIG. 3. Predicted and measured step time (left) and memory usage (right) as functions of physical param

7. LARGE-SCALE SIMULATIONS

While the preceding experiments were performed on simple box grids, the analysis
holds for complex three-dimensional geometries. As an example of realistic simulat
of industrial relevance, argon simulations of a plasma reactor, the Gaseous Electrt
Conference (GEC) reference cell, were considered. A picture of this reactor, and a
cal computational grid used to model it, are shown in Fig. 4. This reactor has a com



i

FIG. 4. The Gaseous Electronics Conference (GEC) reference cell reactor (left) and a computational
used to represent it (right).
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TABLE V
GEC Simulation Predictions
Press. Press. Density Tone Teonv Mem
(Pa) (m Torr) () Cells Particles (s) (s) (B)
0.291 2.19 0 x 10*° 1.4 x 10° 14 x 10° 51.7 40 x 10° 2.88x 108
2.66 20 64 x 107° 1.1x 10 1.1x 10 3.9 x 10 2.8 x 107 2.17 x 104
6.65 50 161 x 10 1.68x 10° 168x 10° 62x10°¢ 11x1C 3.42 x 107
13.3 100 P1x 107 1.3 x 10% 1.3 x 10% 49 x 10° 1.8 x 10%° 2.71x 108

three-dimensional geometry with a volume of 0.01%3and typically operates at a temper-
ature of 300 K.

Using the model and constants developed above, runtime and storage requiremen
be predicted for simulations of the GEC cell at several densities, or pressures. Table V
predictions for the number of cells, number of particles, timestep duration, converge
time, and memory usage, for three different operating pressures. These values were ob
using the machine-specific parameters for the 75-MHz R8000 SGI Power Challenge.

In order to assess the applicability of the model to realistic three-dimensional geomet
the first case, at 0.291 Pa, was configured and simulated on an SGI Power Challenge.
the model and parameters above, memory usage for this simulation was predicted to v
3%. Because the model does not take into account the additional cost of moving part
in the high grid-density regions, the model underpredicted the timestep time by about
In general, the model can be expected to provide an accurate estimate of memory u
and a reasonable lower bound for simulation time, for realistic simulations.

For the other simulations listed in Table V, the higher operating pressure results in ve
larger computational costs, both in terms of simulation time and storage requireme
For a simulation at 2.66 Pa to be conducted to the same accuracy, 22 GB of RAM w
be required, and the convergence portion of the simulation would take 327 days. Wi
512-processor machine, assuming 70% utilization, this simulation could be complete
about 22 h, using 43 MB per processor.

A simulation at 6.65 Pa would require 35 years on a single-processor machine with 2
RAM. On a machine with 1024 R8000 processors with 3 GB RAM each, such a simula
could be completed in 18 days at 70% utilization. For the 13.3 Pa case, a single SGI P
Challenge would require 27 TB of RAM, and convergence would take 570 years. On a 8:
processor Power Challenge, assuming 70% utilization, this simulation might be possib
36 days, using 3.3 GB RAM per processor.

8. CONCLUSION

The results of this work show that the runtime and memory requirements can be accur
predicted on the basis of physical properties and machine-specific parameters. The algc
is fundamentally polynomial in the physical parameters, and the degree of the polyno
can range from 0 to 4. When considering the applicability of the DSMC method t
specific problem, it is essential to consider the runtime and storage requirements fo
simulation. For certain high-density or large-volume problems, these requirements me
prohibitive. By comparing the requirements of the DSMC method with the requirement
other methods, it is possible to determine the best approach for each specific problem
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also possible to predict how chances in physical parameters will affect runtime and stot

re

guirements and, thereby, to determine bounds on the class of problems that can be s

will the DSMC technique, given finite computational resources.
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